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Abstract. Geometrically induced flas O (3) connections on a string world-sheet are used to
construct a self-dual Chern—-Simons system for minimal and constant mean curvature surfaces
immersed inR3. Instanton-type solutions are shown to correspond to vortex configurations.
Inclusion of a third fundamental form is discussed.

The gauged nonlinear Schrodinger equatio(®i 1) dimensions with a non-Abelian Chern—
Simons gauge field has been investigated by Grossman [1], Detraig2] and Dunne [3],

as a generalization of the Abelian Chern—Simons matter-gauge dynamics first proposed by
Jackiw and Pi [4]. The gauge group considered in [1-3§45(N). The coupling of the

matter and gauge fields is done through the Chern—-Simons equation
F;w = €pp J? (1)

which dynamically determines the gauge field by a covariantly conserved cuffent
Equation (1) and the gauged nonlinear Schrodinger equation can be obtained from a
Lagrangian and can be written as

iy = 21

where is in the (SU(N)) Lie algebra and the HamiltoniaH is
H=— / G Tr(D, Y (D_)

with D, = D1 £iDy; D, = 9, +[A,, ]. Static solutions are then equivalent to minimizing
the energy functionalH. The energy-minimizing equation (zero energy)

Diyr =0 2
and the constraint (1)
0 Ay - A +[A A=y y] 3)

wherep of J# has been expressed in termsypf are collectively referred to as self-dual
Chern-Simons equations. In [1, 3], all finite cha§fg(N) solutions have been classified
and are shown to yield two-dimensional classical Toda equations.

§ E-mail address: sarathy@imsc.ernet.in
|| E-mail address: kviswana@sfu.ca

0305-4470/98/5010155+07$19.5@ 1998 IOP Publishing Ltd 10155



10156 R Parthasarathy ath K S \iswanathan

The important observation of Grossman [1] is the self-dual Chern—Simons equations (2)
and (3) corresponding to the gauge gréaup(N) can be obtained as a dimensional reduction
of the four-dimensionabU (N) self-dual equation

Guv = 2€map G
whereG,, = 9, W, — 3,W, + [W,, W,], by identifying W1, = A1, and W3 + iW, =
V; Wa —iWs = ¢! and with all thew,, fields depending on; and x, only (this is the
dimensional reduction) [5]. It will be useful to consider the generalization of the results of
[1, 3] to Lie algebras other thasiU (N).

It is the purpose of this paper to show that the energy-minimizing equation (2) and the
constraint (1) or (3) can be obtained from the Nambu—Goto (NG) action for a string theory,
when the string world-sheet (Euclideanized) is regarded as a Riemann surface conformally
immersed inR" (n > 3). The appropriate gauge group §9(2) x SO(n — 2) dictated
by the geometry of the world-sheet, corresponding toSbg2) symmetry of the tangent
frame and theSO (n — 2) symmetry of the normal frame. The (NG) action is

e = [ Vadis (@)
wheregqs (o, B = 1, 2) is the induced metric on the world-sheet,
8ap = 0o X" (§)0pX,u(§) ©)

with X*(&) as the coordinates of a point on the world-sheet= 1 to n, andé&y, & are the

local coordinates on the world-sheet. Regarded as an immersed sWffaée, &2) are the
immersion coordinates. We [6] have proposed a formalism to study the dynamics of the
string world-sheet using the generalized Gauss map [7]. The Gauss map is defined as

G:My— Gz, 2S0(n)/(SO(2) x SO(n — 2)) (6)
where M, is the world-sheet and the Grassmann@y), arises due to two tangents and
(n — 2) normals to the surface.G», admits a complex structure and we introduce
7 =& +i&, 7 =& —i&. Itis convenient to regar@,, as a quadriaQQ, _, in CP"1 [7].

As G, is a set of two-planes iR" passing through an origin, the (local) tangent two-plane
to Mo becomes an element 6f,, or equivalently a point inQ,,_,. Then

azXM(Zy )= W(DM (7)

where®* € Q,_»; ®*®, = 0 andy is a complex function ot andz, determined by the
geometrical properties a¥fy [7]. As not every element of;,, is a tangent plane td/y,
the Gauss map (6) or (7) has to satigsfiy— 2) conditions of integrability. For the pupose
of this paper, we consider the immersion of the string world-she&®inin this case ®*

is parametrized as

OF = {1— f2 i1+ f?),2f) ®)

where f = f(z,7) is aC P-field. (8) satisfiesb*®, = 0. The Gauss map integrability
condition in terms off is

Im (E— 2/ J: ) =0. ©)

oo 1+1fP
For an immersed surface, besides the induced metric (5) (the first fundamental form),
there will be the second fundamental form [81];5 (i = 1ton — 2) and for immersion in

R®, the scalar mean curvatute= 1g*f H, is related tof by

fzi_ foz
i 14 fP?

(Unh), = (10)
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the Kenmotsu equation [9]. The reality bfleads to (9). The real unit normal to the surface
is

1 - _
NH = + f, =i - 1), 2_1). 11
1+|f|2{f fo=1f =Sl } (11)
The energy integralof the surface [7] is
[P+ 1P :
E=| —=——-dznd 12
APz 42
and the equation of motion minimizing is
2f f. f-
= =0. 13
Sy 49

If the Gauss map functiorf in (7) through (8) satisfies (13), then the surface has constant
mean curvature scalah) in view of (10).

In the study of string dynamics, using the generalized Gauss map, it follows from (5), (7)
and®*®,, = 0, that the induced metric is destined to be in the conformal gauge. In terms of
the complex coordinates, the@i, = g:z = 0 andg,: = [V [2|®? = 2|y |2(1+]f1?)? = /2.

Using the expression fopr [6], it follows that the NG action can be written as

| f]? [ _
SNg—O‘/hz(l+|f|2)22dZ/\dZ (14)
whereo is the string tension. Suppose we consider the world-sheet as a Riemann surface of
constant mean curvature scalarthen absorbing the constaint in o, the NG action (14)
becomes equivalent to tremergy integralof the surface modulo the degree of the map from
§2 — CPL. We will consider such constant mean curvature surfaces hereafter. Then (13)
is the equation of motion of the NG action as well. Usually the minimum of the NG action
is taken to correspond to minimal surfade =€ 0) and in this case the classical action is
taken to bef in (12). Then theC P!-field f is holomorphic and once again the equation
of motion (13) is satisfied byf = f(z). For minimal surfaces, there is no integrability
condition on f. Both classes (minimal and constant mean curvature) of world-sheets have
been studied earlier [10]. In both cases the equation of motion is (13), the difference being
f = f(z) for minimal surfaces angt = f(z) for the other case.

Earlier [11] the real tangents » and the(n — 2) normals to the world-sheet have been
constructed in terms of the Gauss map, and the antisymnietsicn) matricesA, and A;
defined as

azé,‘ = (Az)ijéj i,j =1ton (15)

wherees, éq, . . . ¢, are the(n—2) normals (a similar definition with replaced by givesA:),

have been shown to transform &8 (3, C) gauge fields under localO (n) transformations

on ¢;. These non-Abelian gauge fields are geometrically induced and are characteristics of
the world-sheet. Furthermore the field strength associated with them is zero:

aEAz - 3zA2 + [AZs A"] =0 (16)

as can be seen from (15) and we thus have geometrically-induced zero cus/atiureC)
gauge fields on the world-sheet. For= 3, from (8) and (11) it follows that
[ 0 —i(ff.— Ff) —(fﬁﬁ)}
= T o\ |(ffz_ffz) 0 i(fz_fz) . (17)
AU L v f - f 0

A; can be obtained by replacingby z, f, = g—f and it can be seen that: = —(A.)'.

Z
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The gauge fieldsA,(A;) are projected ont& 0 (2) x SO(n — 2) and the coseG,,.
Considering the local gauge group associated Withn), we have
Mo > (z,%) % g(z,2) € SO(n) (18)
whereg(z, z) can be explicitly written frone; (i =1, 2,...n) as an(n x n) matrix whose
ith column is¢;. Then from (15)
Axe = —g'0.)8. (19)
Under a local gauge transformation generatedifyy z) € SO(2) x SO(n — 2),
8(z,2) = g(z,2)u(z, 2)
AZ(E) e u"'Az@u + MTBZ(Z)M (20)
i.e. A, transform as gauge fields undg0 (2) x SO (n — 2) gauge transformation as well.
We now projectA,: onto SO(2) x SO(n — 2) and the cosetG,,. Denoting the
generators of the Lie algebra 80 (n) by L(5), those ofSO(2) x SO(n —2) by L(¢) and
the remaining byL (o), we have [12]
da(8) = L(6) Tr(L(6)Ax)
bo(g) = L(0) Tr(L(0)Aq)

as projections ont6 0(2) x SO(n — 2) and the coset respectively. In (2d)stands forz
or z. It is easily seen that under the locad (2) x SO (n — 2) gauge transformation (20)

(21)

— ot ]
aq(g) — ay(gu) = u'agu + u'oyu (22)
by — by(gu) = u'byu

namely, thata, transforms as ar§0(2) x SO(n — 2) gauge field andb, transforms
homogeneously. In this way the geometrically inducsd(n, C) gauge fieldsA,:z on
the world-sheet are decomposed i8t0 (2) x SO (n — 2) gauge fieldsz, ;) and a fieldb, )
transforming homogeneously und&0 (2) x SO (n — 2) gauge transformation.

The central theme of this paper is to obtain equations (2) and (3) (self-dual Chern—
Simons equations) from, and b, defined in (21) and from (15). The zero-curvature
equation (16) forA,, when recast in terms af, andb, (21), on account of the Lie group

structure of these fields, gives rise to two equations
0;az — 0za; + [a;, az] = —[b_, bz] 23)
D:b, = D,b:

where D,z = 9,3 + [a.z),]. For n = 3, denoting the anti-Hermitian generators
of SOMB) by T, T», T5; [T1. To] = Ts (cyclic), we havea,:; = 3T3Tr(T34.:) and
b = 3T Tr(T1ALz) + 3T Tr(T2A.). These are explicitly given in terms of th@pP*-
field f as

. 0 iffi=Ff) O
7 = = 5 —i z z 0 0
“T AP [ R 0 0}
1 |: 0 0 f+ J;Z_ :| (24)
b= —— 0 0 _i(fz_fl)
A+ L Z(ft 7y if— ) 0

exhibiting the Lie structure mentioned above. The fieldandb; are obtained by replacing
z in (24) above by;. Now D_b; can be evaluated using (24) and it is found to be vanishing
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if the equation of motion (13) is used. In this way, we have
d0.az — dza; + [a;, az] = —[b., bz]
D.b: =0 (25)
D:b, =0
which are identical to (2) and (3) upon identifying with b,. This procedure can be
extended directly to surfaces immersedRf (n > 4) with the realization of the set of
equations (25). Considering the case witk= 3, in analogy with [3] the matter densigy
can be identified withH,, b:] = p3T5.

We now examine solutions to the self-dual equations obtained in the case of a string
world-sheet immersed iR3. We first note that equations (25) are obtained by using the
equation of motion (13) and so it is pertinent to concentrate on the possible solutions to (13).
Possible solutions to (13) correspond to particular classes of surfaces (world-sheets). There
are two cases of interest: (i) in view of (10) it follows that the surface has a constant mean
curvature scalar if (13) is satisfied. In the Gauss map description [7], whege0, such
surfaces are described by the holomorphic functiéns= f(z). This solves (13) and the
integrability condition as well. (i) Minimal surfaces correspond/to= 0 and there is
no integrability condition onf [7]. f is taken to be anti-holomorphi¢ = f(z) which
satisfies (13). While constant mean curvature surfaces correspond to the dynamics of closed
strings, minimal surfaces correspond to open strings. In both cases we find

0;0;8npz = *p3 (26)
the Liouville equation similar to equation (15) of Dunne [3]. The general solutiorpfor
is then :t%agazﬁn(lJr |£1%) with f = f(z) for case (i) andf = f(z) for case (ii). It is
possible to choose explicitly the solutigf(z) and f(z) as instantons and anti-instantons.
Then

[5Gz - a)
[Tz - by)
where{c, a;, b;} are the (complex) instanton parameters, representing the Gauss map of a
minimal surface with & punctures [10]. For anti-instantons,

[5G~ a)
[T5.G - b
The solutions (27) and (28) satisfy the equation of motion (13) and the self-dual system (25).
Evaluating b, b:], we find from (25)

f@=c 27)

f@=c (28)

(£ = 1£P)

A+1f17?
the magnetic field lying in the Cartan subalgebradf(3). Integrating (29) over the whole
surface, we obtain the magnetic flux alofigas

¢ =+47N (30)
for solutions (27) and (28), thereby describing a magnetic vortex with vortieitysémilar
to the recent observation of Nardeli [13].
The case of the world-sheet having constant mean curvature is of special interest in

what follows. In the considerations of immersed surfaces, Eisenhart [8] introduc#drthe
fundamental form

aza2 - 8Zaz + [azv ai] =-2 (29)

n—2
Hop = Zl: H. HY (31)
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where Hj, are the(n — 2) second fundamental formsV(*3d,dX") or components of
extrinsic curvatureH,p is symmetric ine and 8 anda, g = z or z. The line element on
the immersed surface has been generalized [8] to

ds® = (gap + Hap) dE* di? (32)

so that a notion of 'generalized metriG,s = gqps + Hop iS Now available. This permits a
generalization of the NG action as

/ JG s = / J2ur T Hap R (33)

in the form inspired by Born-Infeld action. Note, however, th&f is symmetric inae and

B. Note also that the above action (33) is Weyl-invariant and contains in its lowest order the

NG and extrinsic curvature action of Polyakov [14]. It will be interesting to examine (33) to

know (cf (4)) whether its classical equations also yield self-dual Chern—Simons equations.
We consider immersion ink3. Using the Gauss map, it is straightforward to

evaluate (31). The various componentsHys are

Hee = 485V LW o+ ¥ f2)
Mo = 485V U ffo + Vo f2)
Mz = 485V fo fo + Vo f2)
Hez = 485V (U fz + ¥ o).
For constant mean curvature surfaces described by f(z), H,, = Hz: = 0 andH,: =

4gZY2 f. f. Hs, = 4g%y2 f; f-. From the Gauss map relatiop, = — f./(h(1+ | f]?)?), it
follows that

(34)

2 2 foz [ _
/@dg_<2+h2> (1+|f|2)22dz/\dz (35)
and this action is equivalent to the NG action (14) expressed in ternfsupfto a constant
multiplicative factor. So the equation of motion of (33) will be the same as (13) and hence
exhibit the self-dual Chern—Simons system (25) as before. In other words, when constant
mean curvature surfaces are considered, two actions (4) and (33), have the same equations
of motion and exhibit the same self-dual system of equations.

To summarize: utilizing the group structure of immersed surfaces, we have made use
of the geometrically induced O (3) flat connections to construct a self-dual Chern—Simons
system of equations, for minimal and constant mean curvature surfaces. The NG action
describing the string world-sheet provides the necessary equation of motion to realize the
above system. Instanton-type solutions are shown to correspond to vortex configurations.
Inclusion of a third fundamental form is shown to have the same feature. This study
complements the investigation of [3] for Lie algebras other tH&nN).
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