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Self-dual Chern–Simons equations and Nambu–Goto action
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Abstract. Geometrically induced flatSO(3) connections on a string world-sheet are used to
construct a self-dual Chern–Simons system for minimal and constant mean curvature surfaces
immersed inR3. Instanton-type solutions are shown to correspond to vortex configurations.
Inclusion of a third fundamental form is discussed.

The gauged nonlinear Schrodinger equation in(2+1) dimensions with a non-Abelian Chern–
Simons gauge field has been investigated by Grossman [1], Dunneet al [2] and Dunne [3],
as a generalization of the Abelian Chern–Simons matter-gauge dynamics first proposed by
Jackiw and Pi [4]. The gauge group considered in [1–3] isSU(N). The coupling of the
matter and gauge fields is done through the Chern–Simons equation

Fµν = εµνρJ ρ (1)

which dynamically determines the gauge field by a covariantly conserved currentJµ.
Equation (1) and the gauged nonlinear Schrodinger equation can be obtained from a
Lagrangian and can be written as

i∂tψ = δH

δψ†

whereψ is in the (SU(N)) Lie algebra and the HamiltonianH is

H = −
∫

d2x Tr(D+ψ†)(D−ψ)

with D± = D1± iD2;Dµ = ∂µ+ [Aµ, ]. Static solutions are then equivalent to minimizing
the energy functionalH . The energy-minimizing equation (zero energy)

D±ψ = 0 (2)

and the constraint (1)

∂−A+ − ∂+A− + [A−, A+] = [ψ†, ψ ] (3)

whereρ of Jµ has been expressed in terms ofψ , are collectively referred to as self-dual
Chern–Simons equations. In [1, 3], all finite chargeSU(N) solutions have been classified
and are shown to yield two-dimensional classical Toda equations.
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The important observation of Grossman [1] is the self-dual Chern–Simons equations (2)
and (3) corresponding to the gauge groupSU(N) can be obtained as a dimensional reduction
of the four-dimensionalSU(N) self-dual equation

Gµν = 1
2εµναβG

αβ

whereGµν = ∂µWν − ∂νWµ + [Wµ,Wν ], by identifying W1,2 = A1,2 andW3 + iW4 =
ψ;W3 − iW4 = ψ† and with all theWµ fields depending onx1 and x2 only (this is the
dimensional reduction) [5]. It will be useful to consider the generalization of the results of
[1, 3] to Lie algebras other thanSU(N).

It is the purpose of this paper to show that the energy-minimizing equation (2) and the
constraint (1) or (3) can be obtained from the Nambu–Goto (NG) action for a string theory,
when the string world-sheet (Euclideanized) is regarded as a Riemann surface conformally
immersed inRn (n > 3). The appropriate gauge group isSO(2) × SO(n − 2) dictated
by the geometry of the world-sheet, corresponding to theSO(2) symmetry of the tangent
frame and theSO(n− 2) symmetry of the normal frame. The (NG) action is

SNG =
∫ √

g d2ξ (4)

wheregαβ (α, β = 1, 2) is the induced metric on the world-sheet,

gαβ = ∂αXµ(ξ)∂βXµ(ξ) (5)

with Xµ(ξ) as the coordinates of a point on the world-sheet:µ = 1 to n, andξ1, ξ2 are the
local coordinates on the world-sheet. Regarded as an immersed surface,Xµ(ξ1, ξ2) are the
immersion coordinates. We [6] have proposed a formalism to study the dynamics of the
string world-sheet using the generalized Gauss map [7]. The Gauss map is defined as

G : M0→ G2,n ' SO(n)/(SO(2)× SO(n− 2)) (6)

whereM0 is the world-sheet and the GrassmannianG2,n arises due to two tangents and
(n − 2) normals to the surface.G2,n admits a complex structure and we introduce
z = ξ1+ iξ2, z̄ = ξ1− iξ2. It is convenient to regardG2,n as a quadricQn−2 in CPn−1 [7].
AsG2,n is a set of two-planes inRn passing through an origin, the (local) tangent two-plane
to M0 becomes an element ofG2,n or equivalently a point inQn−2. Then

∂zX
µ(z, z̄) = ψ8µ (7)

where8µ ∈ Qn−2; 8µ8µ = 0 andψ is a complex function ofz and z̄, determined by the
geometrical properties ofM0 [7]. As not every element ofG2,n is a tangent plane toM0,
the Gauss map (6) or (7) has to satisfy(n− 2) conditions of integrability. For the pupose
of this paper, we consider the immersion of the string world-sheet inR3. In this case,8µ

is parametrized as

8µ = {1− f 2, i(1+ f 2), 2f } (8)

wheref = f (z, z̄) is a CP 1-field. (8) satisfies8µ8µ = 0. The Gauss map integrability
condition in terms off is

Im

(
fzz̄

fz̄
− 2f̄ fz

1+ |f |2
)
z̄

= 0. (9)

For an immersed surface, besides the induced metric (5) (the first fundamental form),
there will be the second fundamental form [8],Hi

αβ (i = 1 to n− 2) and for immersion in

R3, the scalar mean curvatureh = 1
2g

αβHαβ is related tof by

(`nh)z = fzz̄

fz̄
− 2f̄ fz

1+ |f |2 (10)
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the Kenmotsu equation [9]. The reality ofh leads to (9). The real unit normal to the surface
is

Nµ = 1

1+ |f |2 {f + f̄ ,−i(f − f̄ ), |f |2− 1}. (11)

The energy integralof the surface [7] is

E =
∫ |fz̄|2+ |fz|2

(1+ |f |2)2
i

2
dz ∧ dz̄ (12)

and the equation of motion minimizingE is

fzz̄ − 2f̄ fzfz̄
1+ |f |2 = 0. (13)

If the Gauss map functionf in (7) through (8) satisfies (13), then the surface has constant
mean curvature scalar (h) in view of (10).

In the study of string dynamics, using the generalized Gauss map, it follows from (5), (7)
and8µ8µ = 0, that the induced metric is destined to be in the conformal gauge. In terms of
the complex coordinates, then,gzz = gz̄z̄ = 0 andgzz̄ = |ψ |2|8|2 = 2|ψ |2(1+|f |2)2 = √g.
Using the expression forψ [6], it follows that the NG action can be written as

SNG = σ
∫ |fz̄|2
h2(1+ |f |2)2

i

2
dz ∧ dz̄ (14)

whereσ is the string tension. Suppose we consider the world-sheet as a Riemann surface of
constant mean curvature scalarh, then absorbing the constanth2 in σ , the NG action (14)
becomes equivalent to theenergy integralof the surface modulo the degree of the map from
S2→ CP 1. We will consider such constant mean curvature surfaces hereafter. Then (13)
is the equation of motion of the NG action as well. Usually the minimum of the NG action
is taken to correspond to minimal surface (h = 0) and in this case the classical action is
taken to beE in (12). Then theCP 1-field f is holomorphic and once again the equation
of motion (13) is satisfied byf = f (z). For minimal surfaces, there is no integrability
condition onf . Both classes (minimal and constant mean curvature) of world-sheets have
been studied earlier [10]. In both cases the equation of motion is (13), the difference being
f = f (z) for minimal surfaces andf = f (z̄) for the other case.

Earlier [11] the real tangentŝe1,2 and the(n− 2) normals to the world-sheet have been
constructed in terms of the Gauss map, and the antisymmetric(n× n) matricesAz andAz̄
defined as

∂zêi = (Az)ij êj i, j = 1 to n (15)

whereê3, ê4, . . . ên are the(n−2) normals (a similar definition withz replaced bȳz givesAz̄),
have been shown to transform asSO(3, C) gauge fields under localSO(n) transformations
on êi . These non-Abelian gauge fields are geometrically induced and are characteristics of
the world-sheet. Furthermore the field strength associated with them is zero:

∂z̄Az − ∂zAz̄ + [Az̄,Az] = 0 (16)

as can be seen from (15) and we thus have geometrically-induced zero curvatureSO(n,C)

gauge fields on the world-sheet. Forn = 3, from (8) and (11) it follows that

Az = 1

(1+ |f |2)

[ 0 −i(f f̄z − f̄ fz) −(fz + f̄z)
i(f f̄z − f̄ fz) 0 i(fz − f̄z)
fz + f̄z −i(fz − f̄z) 0

]
. (17)

Az̄ can be obtained by replacingz by z̄, fz = ∂f

∂z
and it can be seen thatAz̄ = −(Az)†.
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The gauge fieldsAz(Az̄) are projected ontoSO(2) × SO(n − 2) and the cosetG2,n.
Considering the local gauge group associated withSO(n), we have

M0 3 (z, z̄) g→ g(z, z̄) ∈ SO(n) (18)

whereg(z, z̄) can be explicitly written from̂ei (i = 1, 2, . . . n) as an(n× n) matrix whose
ith column isêi . Then from (15)

Az(z̄) = −g†∂z(z̄)g. (19)

Under a local gauge transformation generated byu(z, z̄) ∈ SO(2)× SO(n− 2),

g(z, z̄)→ g(z, z̄)u(z, z̄)

Az(z̄)→ u†Az(z̄)u+ u†∂z(z̄)u (20)

i.e.Az(z̄) transform as gauge fields underSO(2)×SO(n−2) gauge transformation as well.
We now projectAz(z̄) onto SO(2) × SO(n − 2) and the cosetG2,n. Denoting the

generators of the Lie algebra ofSO(n) by L(σ̃ ), those ofSO(2)×SO(n−2) by L(σ̄ ) and
the remaining byL(σ), we have [12]

aα(g) = L(σ̄ )Tr(L(σ̄ )Aα)

bα(g) = L(σ)Tr(L(σ )Aα)
(21)

as projections ontoSO(2)× SO(n− 2) and the coset respectively. In (21)α stands forz
or z̄. It is easily seen that under the localSO(2)× SO(n− 2) gauge transformation (20)

aα(g)→ aα(gu) = u†aαu+ u†∂αu
bα → bα(gu) = u†bαu

(22)

namely, thataα transforms as anSO(2) × SO(n − 2) gauge field andbα transforms
homogeneously. In this way the geometrically inducedSO(n,C) gauge fieldsAz(z̄) on
the world-sheet are decomposed intoSO(2)× SO(n−2) gauge fieldsaz(z̄) and a fieldbz(z̄)
transforming homogeneously underSO(2)× SO(n− 2) gauge transformation.

The central theme of this paper is to obtain equations (2) and (3) (self-dual Chern–
Simons equations) fromaα and bα defined in (21) and from (15). The zero-curvature
equation (16) forAz(z̄) when recast in terms ofaα andbα (21), on account of the Lie group
structure of these fields, gives rise to two equations

∂zaz̄ − ∂z̄az + [az, az̄] = −[bz, bz̄]

Dz̄bz = Dzbz̄
(23)

where Dz(z̄) = ∂z(z̄) + [az(z̄), ]. For n = 3, denoting the anti-Hermitian generators
of SO(3) by T1, T2, T3; [T1, T2] = T3 (cyclic), we haveaz(z̄) = 1

2T3 Tr(T3Az(z̄)) and
bz(z̄) = 1

2T1 Tr(T1Az(z̄))+ 1
2T2 Tr(T2Az(z̄)). These are explicitly given in terms of theCP 1-

field f as

az = 1

(1+ |f |2)

[ 0 i(f f̄z − f̄ fz) 0
−i(f f̄z − f̄ fz) 0 0

0 0 0

]

bz = 1

(1+ |f |2)

[ 0 0 fz + f̄z
0 0 −i(fz − f̄z)

−(fz + f̄z) i(fz − f̄z) 0

] (24)

exhibiting the Lie structure mentioned above. The fieldsaz̄ andbz̄ are obtained by replacing
z in (24) above bȳz. NowDzbz̄ can be evaluated using (24) and it is found to be vanishing
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if the equation of motion (13) is used. In this way, we have

∂zaz̄ − ∂z̄az + [az, az̄] = −[bz, bz̄]

Dzbz̄ = 0

Dz̄bz = 0

(25)

which are identical to (2) and (3) upon identifyingψ with bz. This procedure can be
extended directly to surfaces immersed inRn (n > 4) with the realization of the set of
equations (25). Considering the case withn = 3, in analogy with [3] the matter densityρ
can be identified with [bz, bz̄] = ρ3T3.

We now examine solutions to the self-dual equations obtained in the case of a string
world-sheet immersed inR3. We first note that equations (25) are obtained by using the
equation of motion (13) and so it is pertinent to concentrate on the possible solutions to (13).
Possible solutions to (13) correspond to particular classes of surfaces (world-sheets). There
are two cases of interest: (i) in view of (10) it follows that the surface has a constant mean
curvature scalar if (13) is satisfied. In the Gauss map description [7], wherefz̄ 6= 0, such
surfaces are described by the holomorphic function,f = f (z̄). This solves (13) and the
integrability condition as well. (ii) Minimal surfaces correspond toh = 0 and there is
no integrability condition onf [7]. f is taken to be anti-holomorphicf = f (z) which
satisfies (13). While constant mean curvature surfaces correspond to the dynamics of closed
strings, minimal surfaces correspond to open strings. In both cases we find

∂z̄∂z`nρ3 = ±ρ3 (26)

the Liouville equation similar to equation (15) of Dunne [3]. The general solution forρ3

is then± 1
2∂z̄∂z`n(1+ |f |2) with f = f (z̄) for case (i) andf = f (z) for case (ii). It is

possible to choose explicitly the solutionf (z) andf (z̄) as instantons and anti-instantons.
Then

f (z) = c
∏N
i=1(z− ai)∏N
i=1(z− bi)

(27)

where{c, ai, bi} are the (complex) instanton parameters, representing the Gauss map of a
minimal surface with 2N punctures [10]. For anti-instantons,

f (z̄) = c̄
∏N
i=1(z̄− āi )∏N
i=1(z̄− b̄i )

. (28)

The solutions (27) and (28) satisfy the equation of motion (13) and the self-dual system (25).
Evaluating [bz, bz̄], we find from (25)

∂zaz̄ − ∂z̄az + [az, az̄] = −2
(|fz̄|2− |fz|2)
(1+ |f |2)2 T3 (29)

the magnetic field lying in the Cartan subalgebra ofSO(3). Integrating (29) over the whole
surface, we obtain the magnetic flux alongT3 as

φ = ±4πN (30)

for solutions (27) and (28), thereby describing a magnetic vortex with vorticity 4π , similar
to the recent observation of Nardeli [13].

The case of the world-sheet having constant mean curvature is of special interest in
what follows. In the considerations of immersed surfaces, Eisenhart [8] introduced thethird
fundamental form,

Hαβ =
n−2∑
i=1

Hi
αγH

iγ

β (31)
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whereHi
αβ are the(n − 2) second fundamental forms (Niµ∂α∂βX

µ) or components of
extrinsic curvature,Hαβ is symmetric inα andβ andα, β = z or z̄. The line element on
the immersed surface has been generalized [8] to

ds2 = (gαβ +Hαβ) dξα dξβ (32)

so that a notion of ’generalized metric’Gαβ = gαβ +Hαβ is now available. This permits a
generalization of the NG action as∫ √

G d2ξ =
∫ √

gαβ +Hαβ d2ξ (33)

in the form inspired by Born-Infeld action. Note, however, thatHαβ is symmetric inα and
β. Note also that the above action (33) is Weyl-invariant and contains in its lowest order the
NG and extrinsic curvature action of Polyakov [14]. It will be interesting to examine (33) to
know (cf (4)) whether its classical equations also yield self-dual Chern–Simons equations.

We consider immersion inR3. Using the Gauss map, it is straightforward to
evaluate (31). The various components ofHαβ are

Hzz = 4gzz̄ψfz(ψ̄f̄z + ψfz̄)
Hzz̄ = 4gzz̄ψ̄(ψfzf̄z̄ + ψ̄f̄zf̄z)
Hz̄z = 4gzz̄ψ(ψ̄f̄z̄fz + ψfz̄fz̄)
Hz̄z̄ = 4gzz̄ψ̄ f̄z̄(ψfz̄ + ψ̄f̄z).

(34)

For constant mean curvature surfaces described byf = f (z̄), Hzz = Hz̄z̄ = 0 andHzz̄ =
4gzz̄ψ̄2f̄zf̄z; Hz̄z = 4gzz̄ψ2fz̄fz̄. From the Gauss map relation,ψ = −f̄z/(h(1+ |f |2)2), it
follows that ∫ √

G d2ξ =
(

2+ 2

h2

)∫
fz̄f̄z

(1+ |f |2)2
i

2
dz ∧ dz̄ (35)

and this action is equivalent to the NG action (14) expressed in terms off up to a constant
multiplicative factor. So the equation of motion of (33) will be the same as (13) and hence
exhibit the self-dual Chern–Simons system (25) as before. In other words, when constant
mean curvature surfaces are considered, two actions (4) and (33), have the same equations
of motion and exhibit the same self-dual system of equations.

To summarize: utilizing the group structure of immersed surfaces, we have made use
of the geometrically inducedSO(3) flat connections to construct a self-dual Chern–Simons
system of equations, for minimal and constant mean curvature surfaces. The NG action
describing the string world-sheet provides the necessary equation of motion to realize the
above system. Instanton-type solutions are shown to correspond to vortex configurations.
Inclusion of a third fundamental form is shown to have the same feature. This study
complements the investigation of [3] for Lie algebras other thanSU(N).
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